ijava学习网> 知识分享> 数据库> Python函数属性和PyCodeObject

Python函数属性和PyCodeObject

时间: 2019-09-22 20:00:33 标签Python , 函数属性

函数属性

python中的函数是一种对象,它有属于对象的属性。除此之外,函数还可以自定义自己的属性。注意,属性是和对象相关的,和作用域无关。

自定义属性

自定义函数自己的属性方式很简单。假设函数名称为myfunc,那么为这个函数添加一个属性var1:

myfunc.var1="abc"

那么这个属性var1就像是全局变量一样被访问、修改。但它并不是全局变量。

可以跨模块自定义函数的属性。例如,在b.py中有一个函数b_func(),然后在a.py中导入这个b.py模块,可以直接在a.py中设置并访问来自b.py中的b_func()的属性。

import b
b.b_func.var1="hello"print(b.b_func.var1)  # 输出hello

查看函数对象属性

python函数是一种对象,是对象就会有对象的属性。可以通过如下方式查看函数对象的属性:

dir(func_name)

例如,有一个属性__name__,它表示函数的名称:

def f(x):
    y=10
    def g(z):
        return x+y+z    return g

print(f.__name__)   # 输出f

还有一个属性__code__,这个属性是本文的重点,它表示函数代码对象:

print(f.__code__)

输出:

上面的输出结果已经指明了__code__也是对象,既然是对象,它就有自己的属性:

print( dir(f.__code__) )

现在,就可以看到函数代码对象相关的属性,其中有一类属性都以co_开头,表示字节码的意思,后文会详细解释这些属性的意义。实际上,并非只有函数具有这些属性,所有的代码块(code block)都有这些属性。

[...省略其它非co_属性...
'co_argcount', 'co_cellvars',
'co_code', 'co_consts',
'co_filename', 'co_firstlineno',
'co_flags', 'co_freevars',
'co_kwonlyargcount', 'co_lnotab',
'co_name', 'co_names', 'co_nlocals',
'co_stacksize', 'co_varnames']

如何查看这些__code__的属性?使用f.__code__.co_XXX即可。由于dir()返回的是属性列表,所以下面使用循环将co_开头的属性都输出出来:

for i in dir(f.__code__):    if i.startswith("co"):        print(i+":",eval("f.__code__."+i))

输出结果:

co_argcount: 1co_cellvars: ('x', 'y')co_code: b'd\x01\x89\x01\x87\x00\x87\x01f\x02d\x02d\x03\x84\x08}\x01|\x01S\x00'co_consts: (None, 10, , 'f..g')co_filename: g:/pycode/b.pyco_firstlineno: 1co_flags: 3co_freevars: ()co_kwonlyargcount: 0co_lnotab: b'\x00\x01\x04\x01\x0e\x02'co_name: fco_names: ()co_nlocals: 2co_stacksize: 3co_varnames: ('x', 'g')

此外,还可以使用dis模块的show_code()函数来输出这些信息的整理:

import disdef f(x):
    y=10
    def g(z):
        return x+y+z    return g

print(dis.show_code(f))

输出结果:

Name:              fFilename:          g:/pycode/b.pyArgument count:    1
Kw-only arguments: 0
Number of locals:  2
Stack size:        3Flags:             OPTIMIZED, NEWLOCALSConstants:
   0: None
   1: 10
   2: 
   3: 'f..g'
Variable names:
   0: x
   1: g
Cell variables:
   0: x
   1: y
None

__code__属性的解释

这些属性定义在python源码包的Include/code.h文件中,如有需要,可自行去查看。

另外,这些属性是代码块(code block)的,不限于函数。但此处以函数为例进行说明。

由于这些属性中涉及到了闭包属性(或者嵌套函数的属性),所以以下面这个a.py文件中的嵌套函数为例:

import dis
x=3def f(a,b,*args,c):
    a=3
    y=10
    print(a,b,c,x,y)    def g(z):
        return a+b+c+x+z    return g

以下是查看函数f()和闭包函数g()的方式:

# f()的show_code结果dis.show_code(f)# f()的co_XXX属性for i in dir(f.__code__):    if i.startswith("co"):        print(i+":",eval("f.__code__."+i))# 闭包函数,注意,传递了*args参数f1=f(3,4,"arg1","arg2",c=5)# f1()的show_code结果dis.show_code(f1)# f1()的co_XXX属性for i in dir(f1.__code__):    if i.startswith("co"):        print(i+":",eval("f1.__code__."+i))

下面将根据上面查看的结果解释各属性:

co_name
函数的名称。

上例中该属性的值为外层函数f和闭包函数g,注意不是f1。

co_filename
函数定义在哪个文件名中。

上例中为a.py

co_firstlineno
函数声明语句在文件中的第几行。即def关键字所在的行号。

上例中f()的行号为3,g()的行号为7。

co_consts
该函数中使用的常量有哪些。python中并没有专门的常量概念,所有字面意义的数据都是常量。

以下是show_code()得到的f()中的常量:

Constants:   0: None   1: 3
   2: 10
   3:    4: 'f..g'

而内层函数g()中没有常量。

co_kwonlyargcount
keyword-only的参数个数。

f()的keyword-only的参数只有c,所以个数为1
g()中没有keyword-only类的参数,所以为0

co_argcount
除去*args之外的变量总数。实际上是除去***所收集的参数以及keyword-only类的参数之后剩余的参数个数。换句话说,是***前面的位置参数个数。

f()中属于此类参数的有a和b,所以co_argcount数值为2
g()中只有一个位置参数,所以co_argcount数值为1

co_nlocals
co_varnames
本地变量个数和它们的名称,变量名称收集在元组中。

f()的本地变量个数为6,元组的内容为:('a', 'b', 'c', 'args', 'y', 'g')
g()的本地变量个数为1,元组的内容为:('z',)

co_stacksize
本段函数需要在栈空间评估的记录个数。换句话说,就是栈空间个数。

这个怎么计算的,我也不知道。以下是本示例的结果:
f()的栈空间个数为6
g()的栈空间个数为2

co_names
函数中保存的名称符号,一般除了本地变量外,其它需要查找的变量(如其它文件中的函数名,全局变量等)都需要保存起来。

f()的co_names:

Names:
   0: print
   1: x

g()的co_names:

Names:
   0: x

co_cellvars
co_freevars
这两个属性和嵌套函数(或者闭包有关),它们是互相对应的,所以内容完全相同,它们以元组形式存在。

co_cellvars是外层函数的哪些本地变量被内层函数所引用
co_freevars是内层函数引用了哪些外层函数的本地变量

对外层函数来说,co_freevars一定是空元组,对内层函数来说,co_cellvars则一定是空元组。

如果知道自由变量的概念,这个很容易理解。

f()的co_cellvars内容: ('a', 'b', 'c', 'y')
f()的co_freevars内容: ('a', 'b', 'c', 'y')

co_code
co_flags
co_lnotab
这3个属性和python函数的源代码编译成字节码有关,本文不解释它们。

属性和字节码对象PyCodeObject

对于python,通常都认为它是一种解释型语言。但实际上它在进行解释之前,会先进行编译,会将python源代码编译成python的字节码(bytecode),然后在python virtual machine(PVM)中运行这段字节码,就像Java一样。但是PVM相比JVM而言,要更"高级"一些,这个高级的意思和高级语言的意思一样:离物理机(处理机器码)的距离更远,或者说要更加抽象。

源代码被python编译器编译的结果会保存在内存中一个名为PyCodeObject的对象中,当需要运行时,python解释器开始将其放进PVM中解释执行,执行完毕后解释器会"根据需要"将这个编译的结果对象持久化到二进制文件*.pyc中。下次如果再执行,将首先从文件中加载(如果存在的话)。

所谓"根据需要"是指该py文件是否只运行一次,如果不是,则写入pyc文件。至少,对于那些模块文件,都会生成pyc二进制文件。另外,使用compileall模块,可以强制让py文件编译后生成pyc文件。

但需要注意,pyc虽然是字节码文件,但并不意味着比py文件执行效率更高,它们是一样的,都是一行行地读取、解释、执行。pyc唯一比py快的地方在导入,因为它无需编译的过程,而是直接从文件中加载对象。

py文件中的每一个代码块(code block)都有一个属于自己的PyCodeObject对象。每个代码块除了被编译得到的字节码数据,还包含这个代码块中的常量、变量、栈空间等内容,也就是前面解释的各种co_XXX属性信息。

pyc文件包含3部分:

  • 4字节的Magic int,表示pyc的版本信息

  • 4字节的int,是pyc的产生时间,如果与py文件修改时间不同,则会重新生成

  • PycodeObject对象序列化的内容


版权说明| 关于ijava| 合作伙伴| 联系我们| 网站地图| 招贤纳士

Copyright © 2017 www.ijava.com All Rights Reserved 版权所有•ijava学习网 京ICP备14061482号-18         官方QQ:3325669927

ijava学习网提供免费java教程和大量java面试题库,给高级会员提供免费的java培训,同时提共一些java开发项目和java下载,java工程师,java菜鸟们快来哦。记住我们的网站:www.ijava.com